

Using a Battery Energy Storage System to Enhance Stability in an Islanded Microgrid

Stephen Cialdea

Research Assistant Worcester Polytechnic Institute Associate Engineer Three-C Electrical Engineering Services

John A. Orr, LFIEEE, Alexander E. Emanuel, LFIEEE, Tan Zhang

Overall Project Overview

- Validate the economic and system performance benefits of Battery Energy Storage Systems (BESS) in the distribution system
- Premium Power Corporation (Prime Contractor) is developing large-capacity flow battery and inverter systems

WPI Role

- Develop a modeling environment for distribution feeders including distributed generation and energy storage
- Develop Optimal Charge/Discharge Algorithms for use in the model
- Perform detailed investigation of economic benefits of:
 - Time shifting of energy purchases
 - Output leveling
 - Feeder upgrade deferral
 - Outage prevention

Power Flow Model Capabilities

- Produces time profiles of output variables
- Performs electrical and economic calculations
- Implemented in MATLAB's Simulink
- Models real and reactive power, voltage, and voltage phase angle with substation as the reference
- Three phase, balanced/unbalanced
- Load and energy price profiles vs. time are inputs
- Series RL, symmetric geometry line model is used

Application of the Modeling System

- Goal is to investigate BESS benefits
 - Energy arbitrage (buy low, sell high)
 - Voltage stabilization
 - Outage prevention
 - Peak shaving, load leveling
- Inputs to model
 - Distribution system design (substation transformer rating, wire gauge, geometry, load locations)
 - Time varying profile of each load (balanced/unbalanced, active/reactive)
 - Distributed generation location and output profile
 - BESS location, capacity, charge/disch rates, efficiency
- A BESS control algorithm is needed

Dynamic Programming Algorithm

g

EEE

Renewable Energy Smoothing Example

gy Society

8

Multiple uses for a grid-located BESS may be required for economic viability

Using a Battery Energy Storage System to Enhance Stability in an Islanded Microgrid

Microgrid Components

- Essential loads
- Controllable generation
 - Sized with a safety margin
 - Small amount of system inertia

Stability

Adding a BESS

 BESS Can be used as temporary load during transient events

Stability with BESS

BESS Sizing

$$BESS_{PC} = P_{ML} - (P_{MLPF}) * (1 - S)$$

	Description
BESS _{PC}	Required BESS power capacity
P _{ML}	Maximum pre-fault load
PMLPF	Maximum post-fault load
S	Safety margin

$$BESS_{EC} = \frac{BESS_{PC}t_d}{2} = \frac{BESS_{PC}^2}{2R_G}$$

dg.

for electricity innovation

at ILLINOIS INSTITUTE OF TECHNOLOGY

	Description
BESS _{EC}	Required BESS energy capacity
t _d	Time the BESS must act as a load
R _G	Rate at which the generator changes power output

Microgrid Configurations

 Adding tie schemes can reduce the amount of load shedding

Conclusion

- BESS can be a useful addition to microgrids in order to improve stability
- The stability enhancement function may be combined with other BESS uses, improving economic viability

